15,870 research outputs found

    Spatial modeling of extreme snow depth

    Full text link
    The spatial modeling of extreme snow is important for adequate risk management in Alpine and high altitude countries. A natural approach to such modeling is through the theory of max-stable processes, an infinite-dimensional extension of multivariate extreme value theory. In this paper we describe the application of such processes in modeling the spatial dependence of extreme snow depth in Switzerland, based on data for the winters 1966--2008 at 101 stations. The models we propose rely on a climate transformation that allows us to account for the presence of climate regions and for directional effects, resulting from synoptic weather patterns. Estimation is performed through pairwise likelihood inference and the models are compared using penalized likelihood criteria. The max-stable models provide a much better fit to the joint behavior of the extremes than do independence or full dependence models.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS464 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sub-kilometre scale distribution of snow depth on Arctic sea ice from Soviet drifting stations

    Get PDF
    The sub-kilometre scale distribution of snow depth on Arctic sea ice impacts atmosphere-ice fluxes of energy and mass, and is of importance for satellite estimates of sea-ice thickness from both radar and lidar altimeters. While information about the mean of this distribution is increasingly available from modelling and remote sensing, the full distribution cannot yet be resolved. We analyse 33 539 snow depth measurements from 499 transects taken at Soviet drifting stations between 1955 and 1991 and derive a simple statistical distribution for snow depth over multi-year ice as a function of only the mean snow depth. We then evaluate this snow depth distribution against snow depth transects that span first-year ice to multiyear ice from the MOSAiC, SHEBA and AMSR-Ice field campaigns. Because the distribution can be generated using only the mean snow depth, it can be used in the downscaling of several existing snow depth products for use in flux modelling and altimetry studies

    Plant phenology and seasonal nitrogen availability in Arctic snowbed communities

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2006This study was part of the International Tundra Experiment (ITEX) and examined the effects of increased winter snow depth and decreased growing season length on the phenology of four arctic plant species (Betula nana, Salix pulchra, Eriophorum vaginatum, and Vaccinium vitis-idaea) and seasonal nitrogen availability in arctic snowbed communities. Increased snow depth had a large effect on the temporal pattern of first date snow-free in spring, bud break, and flowering, but did not affect the rate of plant development. By contrast, snow depth had a large qualitative effect on N mineralization in deep snow zones, causing a shift in the timing and amount of N mineralized compared to ambient snow zones. Nitrogen mineralization in deep snow zones occurred mainly overwinter, whereas N mineralization in ambient snow zones occurred mainly in spring. Concentrations of soil dissolved organic nitrogen (DON) were approximately 5 times greater than concentrations of inorganic nitrogen (DIN) and did not vary significantly over the season. Projected increases in the depth and duration of snow cover in arctic plant communities will likely have minor effects on plant phenology, but potentially large effects on patterns of N cycling

    A simple model for predicting snow albedo decay using observations from the Community Collaborative Rain, Hail, and Snow-Albedo (CoCoRAHS-Albedo) Network

    Get PDF
    The albedo of seasonal snow cover plays an important role in the global climate system due to its influence on Earth’s radiation budget and energy balance. Volunteer CoCoRaHS-Albedo observers collected 3,249 individual daily albedo, snow depth, and density measurements using standardized techniques at dozens of sites across New Hampshire, USA over four winter seasons. The data show that albedo increases rapidly with snow depth up to ~ 0.14 m. Multiple linear regression models using snowpack age, snow depth or density, and air temperature provide reasonable approximations of surface snow albedo during times of albedo decay. However, the linear models also reveal systematic biases that highlight an important non-linearity in snow albedo decay. Modeled albedo values are reasonably accurate within the range of 0.6 to 0.9, but exhibit a tendency to over-estimate lower albedo values and under-estimate higher albedo values. We hypothesize that rapid reduction in high albedo fresh snow results from a decrease in snow specific surface area, while during melt-events the presence of liquid water in the snowpack accelerates metamorphism and grain growth. We conclude that the CoCoRaHS-Albedo volunteer observer network provides useful snow albedo, depth, and density measurements and serves as an effective model for future measurement campaigns

    Relationships between climate and winter cereal grain quality in Finland and their potential for forecasting

    Get PDF
    Many studies have demonstrated the effects of climate on cereal yield, but there has been little work carried out examining the relationships between climate and cereal grain quality on a national scale. In this study national mean hectolitre weight for both rye and winter wheat in Finland was modelled using monthly gridded accumulated snow depth, precipitation rate, solar radiation and temperature over the period 1971 to 2001. Variables with significant relationships in correlation analysis both before and after difference detrending were further investigated using forward stepwise regression. For rye, March snow depth, and June and July solar radiation accounted for 66% of the year-to-year variance in hectolitre weight, and for winter wheat January snow depth, June solar radiation and August temperature accounted for 62% of the interannual variance in hectolitre weight. Further analysis of national variety trials and weather station data was used to support proposed biological mechanisms. Finally a cross validation technique was used to test forecast models with those variables available by early July by making predictions of above or below the mean hectolitre weight. Analysis of the contingency tables for these predictions indicated that national hectolitre weight forecasts are feasible for both cereals in advance of harvest

    Using a fixed-wing UAS to map snow depth distribution: An evaluation at peak accumulation

    Get PDF
    We investigate snow depth distribution at peak accumulation over a small Alpine area ( 3c0.3 km 2 ) using photogrammetry-based surveys with a fixed-wing unmanned aerial system (UAS). These devices are growing in popularity as inexpensive alternatives to existing techniques within the field of remote sensing, but the assessment of their performance in Alpine areas to map snow depth distribution is still an open issue. Moreover, several existing attempts to map snow depth using UASs have used multi-rotor systems, since they guarantee higher stability than fixed-wing systems. We designed two field campaigns: during the first survey, performed at the beginning of the accumulation season, the digital elevation model of the ground was obtained. A second survey, at peak accumulation, enabled us to estimate the snow depth distribution as a difference with respect to the previous aerial survey. Moreover, the spatial integration of UAS snow depth measurements enabled us to estimate the snow volume accumulated over the area. On the same day, we collected 12 probe measurements of snow depth at random positions within the case study to perform a preliminary evaluation of UAS-based snow depth. Results reveal that UAS estimations of point snow depth present an average difference with reference to manual measurements equal to -0.073 m and a RMSE equal to 0.14 m. We have also explored how some basic snow depth statistics (e.g., mean, standard deviation, minima and maxima) change with sampling resolution (from 5 cm up to 3c100 m): for this case study, snow depth standard deviation (hence coefficient of variation) increases with decreasing cell size, but it stabilizes for resolutions smaller than 1 m. This provides a possible indication of sampling resolution in similar conditions

    Changes in snow depth under elevation‐dependent warming over the Tibetan Plateau

    Get PDF
    Abstract Snow plays an essential role in regulating climate change, the hydrological cycle, and various biological processes. Passive microwave snow depth data and gridded data from the Climate Research Unit (CRU_TS4.04) are utilized in this study to investigate spatiotemporal variations of snow depth over the Tibetan Plateau (TP), with special focus on the vertical dimension. The response of snow to elevation‐dependent warming (EDW) is determined accordingly. High mountains experience more rapid warming than lower elevations. During 1980–2014, the total snow depth over the TP decreased; areas with the most significant decreasing trends are mainly concentrated in the northwestern and southwestern parts of the TP. The plateau‐wide decrease in snow depth (−0.24 cm/decade) is mainly affected by increasing temperature (0.30°C/decade). The reduction in snow depth trend intensifies as sub‐regional mean elevation increases from 3,332 m (IID2) to 5,074 m (ID1). A stronger snow depth decrease in high‐elevation sub‐regions generally corresponds to higher warming rates, which demonstrates EDW. The most pronounced correlation between snow depth decrease rate and elevation occurs in the southeastern TP, which covers the largest elevation range on the plateau (from 2,000 to 6,000 m)
    corecore